Materials and Methods

- **CDR**: Current Digitization round
- **PBMC**: Peripheral blood mononuclear cells
- **nPOD**: Next-Generation Randomized Olfactory Profiling
d- **TCR**: T-cell receptor
- **V**: Variable region
- **D**: Diversity region
- **J**: Joining region

Results

Top Variable-region β-chain Clones in nPOD Samples

- **Top 20 TCR V Genes in T1D-C peptide**: 60.78 (log2)
- **Top 20 TCR V Genes in T1D-C peptide**: 20.78 (log2)
- **Top 20 BCR V Genes in T1D-C peptide**: 60.78 (log2)
- **Top 20 BCR V Genes in T1D-C peptide**: 20.78 (log2)

Repertoire Overlap in T cells

- **pancLN**: Pancreatic lymph node
- **CD4+ T cells**: CD4-positive T cells
- **PMBC**: Peripheral mononuclear cells

Figure 4. TCR V genes Analysis Heat Map of FACS

- **AAR**: Autoimmune response
- **DQA1**: DQ alpha 1
- **DQB1**: DQ beta 1
- **DRB1**: DR beta 1

Figure 5. (a-f). Enrichment of TCR Variable-region β-chains (V-beta) TCRBV05-01 in the pancreato-draining lymph node (pancLN)

- **T1D**: Type 1 diabetes
- **T2D**: Type 2 diabetes
- **AAB**: Autoimmune disease

Demographics

<table>
<thead>
<tr>
<th>Case ID</th>
<th>AGE (y)</th>
<th>GENDER</th>
<th>ETHNICITY</th>
<th>BMI</th>
<th>C-peptide (ng/mL)</th>
<th>Disease (y)</th>
<th>AAB</th>
<th>HLA-A</th>
<th>HLA-B</th>
<th>HLA-DQA1</th>
<th>HLA-DQB1</th>
<th>HLA-DRB1</th>
<th>PBMC</th>
<th>TCRBV</th>
<th>TCRBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.3</td>
<td>8.05</td>
<td>Control</td>
<td>Negative</td>
<td>02:01, 02:11</td>
<td>44, 52</td>
<td>02:01, 03:01</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Conclusions & Future Directions

- **Adaptive’s**
- **nPOD**: Next-Generation Randomized Olfactory Profiling
- **TCR**: T-cell receptor
- **β**: Beta chain

Figure 6. TCR Enrichment in Case 6265

- **AAB**: Autoimmune disease
- **nPOD**: Next-Generation Randomized Olfactory Profiling
- **TCRV**: T-cell receptor
- **β**: Beta chain

Analysis of AIDP tissues provides the unique ability to make comparisons of TCR and BCR usage in cross-sectional patient cohorts from various tissue sources relevant to the disease pathogenesis.

Acknowledgements

This study was supported by a research grant from the Charitable Contributions of the University of Florida Diabetes Institute.